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Aging is a gradual, complex process in which cells, tissues, organs, and the whole organism itself deteriorate in a progressive
and irreversible manner that, in the majority of cases, implies pathological conditions that affect the individual’s Quality of Life
(QOL). Although extensive research efforts in recent years have beenmade, the anticipation of aging and prophylactic or treatment
strategies continue to experience major limitations. In this review, the focus is essentially on the compilation of the advances
generated by cellular expression profile analysis through proteomics studies (two-dimensional [2D] electrophoresis and mass
spectrometry [MS]), which are currently used as an integral approach to study the aging process. Additionally, the relevance of
the oxidative stress factors is discussed. Emphasis is placed on postmitotic tissues, such as neuronal, muscular, and red blood
cells, which appear to be those most frequently studied with respect to aging. Additionally, models for the study of aging are
discussed in a number of organisms, such as Caenorhabditis elegans, senescence-accelerated probe-8 mice (SAMP8), naked mole-
rat (Heterocephalus glaber), and the beagle canine. Proteomic studies in specific tissues and organisms have revealed the extensive
involvement of reactive oxygen species (ROS) and oxidative stress in aging.

1. Introduction

Despite the great research efforts performed since molecular
techniques have emerged, it is unquestionable that the step-
by-step approach of studying one gene or one protein at a
time, even if their partners could eventually be unveiled, is a
parsimonious endeavor.Therefore, a more integral and holis-
tic approach is required. Within this context, genomic and
proteomic studies, mainly by microarray for messenger RNA
(mRNA) and two-dimensional (2D) electrophoresis for pro-
tein expression profiles, would eventually elicit the compre-
hension of the entire process of cell function, and also that
at tissue and organ levels, which in turn will provide us with
a wider panorama and lead us to a more comprehensive

understanding of the agingmechanisms and the intrinsic role
of reactive oxygen species (ROS) at a molecular level.

Both approaches yield a large amount of information
from every group of cells, tissue, or organ condition, both in
vivo and in vitro, under certain circumstances, and at a par-
ticular developmental time. In this review, we present a
compilation of advances of the influence of oxidative stress
during aging, obtained by means of a proteomic approach in
different cellular types, tissue types, or animal models. The
secondmajor global approach for expression analysis, by gene
expression profile bymicroarrays, will be reviewed elsewhere.

The existence of free radicals, such as chemical entities,
was inferred 100 years ago, but their importance in biological
systems was not recognized until the mid-1950s; nonetheless,

Hindawi Publishing Corporation
Oxidative Medicine and Cellular Longevity
Volume 2014, Article ID 573208, 18 pages
http://dx.doi.org/10.1155/2014/573208



2 Oxidative Medicine and Cellular Longevity

Molecular structure analysis: 
mass spectroscopy, microsequencing

Sample preparation: 
organ, tissue, cell type, extract, or 

subcellular fraction

Sample processing: 
isoelectrofocusing and 2D 

electrophoresis

Image analysis: detection, 
quantifcation, and identifcation

1

2

3

4

5

sequence identifcation,            
Bioinformatics analysis: 

homology searches, motif analysis, 
and functional analysis

Databases

Figure 1: General stages of the proteomic analysis.

for the majority of the remaining 20th century, ROS were
considered “a type of biochemical rusting agent that caused
stochastic tissue damage and disease” [1]. Now, in the 21st cen-
tury, reactive oxygen biochemistry is quite relevant among
the biomedical sciences, and it is currently recognized that
nearly every disease involves some degree of oxidative stress.
Additionally, it is recognized that ROS are produced in a
well-regulated manner to help maintain homeostasis at the
cellular level in normal, healthy tissue [1]; but, when ROS
concentrations exceed the cell’s antioxidant capacity, severe
damage can occur and the organism experiences oxidative
stress [2]. The damaging effects of these concentrations have
been implicated in aging [3, 4], and also in neurodegenerative
diseases such as Alzheimer’s disease and Parkinson’s disease,
and in other chronic and degenerative diseases such as cancer,
atherosclerosis, diabetes, and heart disease [5].

As early as 1956, Denham Harman proposed the “Free
Radical Theory of Aging” [6]; additionally, other studies
from Gilbert, Chance, and Commoner can be considered as
the “founders” of reactive oxygen biochemistry. However, by
1980, oxyradicals were accepted biological entities, though
their significance for aging and disease remained generally
unappreciated [1]. Around 1980, the Stadtman group began
to investigate the nature and consequences of protein oxi-
dation in vitro and in vivo. These authors measured protein
carbonyl groups as indices of oxidative damage and applied
these techniques to the study of protein oxidation in aging
tissue, describing the first, detailed determinations of protein
oxidation in models of human aging [7, 8] and giving rise
to serious consideration of oxidative stress as a pathological
factor.

The application of genomics, proteomics, and even meta-
bolomics to the research on aging, as well as the study of
epigenetic influences that are able to induce histone and
DNA modifications and influence enzyme activity, would

increase our understanding of the origin and development
of the different process that contributes to this unavoidable
life consequence, senescence. Epigenetic mechanisms are
typically associated with the aging process and age-related
diseases and may have significant roles to play in the pres-
ence of oxidative stress during aging, thereby enabling the
establishment of specific diagnostic profiles and therapeutic
templates that could aid in improving Quality of Life (QOL)
at advanced ages (for a striking revision regarding the
relationship between epigenetic factors and aging, see [9]).

2. Global Approaches to the Study of Oxidative
Stress in Aging at the Molecular Level

One of the major goals of Gerontology is to understand the
complex mechanisms involved in aging at the molecular,
cellular, and organ levels that would also make the under-
standing of age-related diseases possible. Because of practical
limitations in studying the aging process in humans in
vivo, animal models are frequently utilized [10]; however,
differences in longevity between themajority of experimental
animal models and humans make analysis somewhat dif-
ficult. Despite these limitations, research in this area has
accelerated with the application of high-throughput tech-
nologies such as microarrays and mass spectrometry (MS).
Once applied, the information generated must be analyzed
accurately; thus, the use of bioinformatics is highly relevant
[11]. One of the great advantages of the study of the proteomic
is that the huge amount of information generated by a
particular set of experiments, as occurs in genomics studies
also, can be deposited in large databases, which in turn would
accelerate, in the near future, experimental work and improve
the results obtained, particularly in the study of aging as
a comprehensive biological phenomenon (Figure 1). While
aging has been considered a stochastic process, widespread
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Table 1: Major posttranslational protein oxidative modifications during oxidative stress mediated aging.

Type of modification Consists of
Irreversible

Carbonylation Covalent adduction of lipid aldehydes, often six, nine, or 12 carbons, to the side chains of lysine,
histidine, and cysteine residues

3-Nitrotyrosilation Formed between reactive nitrogen species and a protein’s tyrosine residue
Reversible

S-Sulfenation Generation of sulfur-hydroxylation product (P-SOH) may be a prelude to sulfination, sulfonation,
disulfide bond formation, and sulfenyl-amide bond formation

S-Nitrosylation Covalent incorporation of a nitric oxide moiety into thiol groups to form S-nitrosothiol (SNO)
S-Glutathionylation Covalent attachment of glutathione (GSH) to protein thiol groups
Disulfide formation Disulfide bonds are usually formed from the oxidation of sulfhydryl (–SH) groups
4-Hydroxy-2-nonenal
(HNE) modification Is a major lipid peroxidation product formed during oxidative stress

opinion at present takes into account the existence of a strictly
regulated system that fine-tunes the lifespan of an organism
through modulation of its responses to oxidative stress [12].

Research on ROS and oxidative stress has become a
rapidly growing and evolving subject of study. Specifically in
the field of aging studies, a review of the PubMed database
(http://www.ncbi.nlm.nih.gov/) under the terms (“oxidative
stress” OR “reactive oxygen species”) AND aging AND
microarray or (“oxidative stress” OR “reactive oxygen spe-
cies”) AND aging AND proteomic (both restricted to title/
abstract search fields) shows the increasing interest in these
integral molecular approaches during the last decade.

It is relevant to bear in mind the relevance of posttrans-
lational modifications that regulate the activity of proteins
inside the cell. Thus, the number of distinct protein func-
tionalities exceeds the number of protein sequences and con-
centrations; therefore, onemust establish the relative concen-
tration, location, and posttranslational modification of each
isoform in order to completely characterize protein function.

3. Accumulation of Altered Posttranslational
Modifications and Lack of Adequate Protein
Degradation Are Involved in Aging

During the normal aging process and also in age-related
diseases such as atherosclerosis, cataracts, type 2 diabetes, and
neurodegenerative diseases, proteins are the targets of several
posttranslational deleterious modifications that alter their
biological functions (Table 1). ROS increase oxidative stress
[13–15] and reactive nitrogen species (RNS) yield nitrosative
stress [15]. Together, as well as in conjunction with other
toxic compounds, such as dicarbonyl and reactive aldehydes,
which are mainly responsible for this damage [16, 17], which
in several cases translates into clinical pathology.

Additionally, protein degradation is integral formaintain-
ing a healthy and functional proteome, particularly for turn-
ing over misfolded and damaged proteins. Removal of oxi-
dized proteins first involves selective recognition of themodi-
fication and afterward, either their repair or their degradation
[18]. Protein concentration increases with both decreased

degradation and increased synthesis; yet, while decreased
degradation results in the accumulation of “old” proteins,
increased synthesis does not [19]. Thus, the age-related accu-
mulation of damaged proteins is thought to result from both
the increased occurrence of damage, which is due, at least
in part, to alterations in the detoxification of the damaging
agents, and from the decreased efficiency of the different
systems involved in the elimination of damaged proteins [20].
This relationship is illustrated in Figure 2.

Protein quality, but not necessarily quantity, is altered in
a disease state and can be reversed by appropriate treatment.
This has been demonstrated, for example, in the case of
apolipoproteinA1 (ApoA1) in type 1 diabetes, inwhichApoA-
1 proteins acutely acquired damage during insulin depri-
vation, providing a feasible mechanism for the association
between chronically poor glycemic control and higher levels
of protein oxidation in diabetes [21]. In fact, it may be that
this rapid aging of ApoA-1, a key protein in lipoprotein
metabolism, causes a higher risk of macrovascular disease
in persons with type 1 diabetes [22]. Therefore, it has been
proposed that aging, as well as certain pathologies such as
diabetes, insulin resistance, and metabolic syndrome, are
caused in part by the disproportionate accumulation of
damaged and dysfunctional proteins, rather than by their
increased concentration per se, by the impairing of cellular
degradation systems, whereby oxidized proteins that would
normally be targeted for degradation accumulate due to age-
related slowing of degradation pathways, which are easily
overwhelmed by an excess of posttranslational stress [19,
20, 23–28]. Accordingly, observational studies in animals
suggest that enhancing protein degradation by caloric restric-
tion and aerobic exercise may retard aging and reverse
age-associated pathologies, and it has been hypothesized
that caloric restriction helps to modulate the inflammatory
process, subsequently leading to the reduction of chronic
diseases known to compromise the functional longevity of
humans [29]. Notwithstanding this, whether these strategies
can promote similar improvements in humans remains to be
shown [19].

Oxidation of proteins targets them for degradation; how-
ever, extensive oxidation acts against their recycling because



4 Oxidative Medicine and Cellular Longevity

Functional
proteins

Functional
proteins

Health DiseaseTransitional
stages

Oxidative
damage

Protein
turnover

Young AgedTransitional
stages

Altered
proteins

Altered
proteins

Figure 2: Alteration of proteins by oxidative damage and their turnover. The balance between functional proteins, present in young or
healthy organisms, and detrimental or altered proteins, present in a large proportion of aged or diseased organisms, depends mainly on their
modification and turnover. If proteins are affected by an increase in oxidative damage or by a lowprotein turnover, altered proteins accumulate,
in contrast to when oxidative damage diminishes and protein turnover increases, when functional proteins increase their proportion and the
organism transits to a healthy stage.

it inhibits proteolysis, leading to pathological accumulation
and deposition [28, 30]. Modification of proteins also can
modify an active site, block a phosphorylation site, or disrupt
a binding site for substrates, cofactors, or partner proteins.
Furthermore, it can create new epitopes for antibody recog-
nition and induce autoimmune disorders [31, 32].

Although it is widely recognized that cellular aging causes
changes in the proteome, the nature and targets of these
changes and their consequences have not yet been completely
identified. It is noteworthy that accumulative oxidative post-
translational modifications are relevant only if these detected
modifications are connected to functional consequences [33].
But in addition, it is relevant to consider that a slight modi-
fication in low abundance proteins may be of physiological
importance; therefore, many proteomic studies have been
undertaken to identify modified proteins. Distinguishing
between inconsequential modifications and functionally sig-
nificant ones requires careful biochemical and biophysical
analysis of target proteins.Thus, proteomic approaches repre-
sent powerful tools to address these questions by identifying
the targeted proteins and the extent of their modifications.

4. Oxidation of Proteins Directly Affects
Energetic and Metabolic Pathways and Is
Related to Longevity

Oxidation-reduction (Redox) regulatory control and oxida-
tive stress are two sides of the same coin: oxidation of pro-
teins can modify proteins under reversible Redox regulatory
control or, alternatively, can result in reversible or irreversible
oxidative damage. Proteins are very sensitive to the action of
ROS [16] and represent nearly 70% of their targeted entities

[34]; in addition, ROS can oxidize membrane lipids, generat-
ing intermediary compounds that have a longer lifespan than
ROS and that can diffuse into the cell, acting as a “toxic second
messenger,” amplifying the damage of free radicals [35].
Recently, systemic Redox regulation has been recognized as a
highly important element for longevity in a group of Japanese
semisuper centenarians (>105 years of age), who probably
escape from many serious chronic and age-related diseases
by their ability to deal with a variety of stresses, including
oxidative stress [36].

Therefore, recent proposals tend to prevent, rather than
counteract, ROS production, particularly at the mitochon-
drial level, during oxidative metabolism (the mitochondrial
free radical theory of aging) [37]. Although there is evidence
that ROS production in the human skeletal muscle is lower
in mitochondria from older subjects [38], adenosine triphos-
phate (ATP) synthesis was significantly decreased, support-
ing the concept that aging is associated with a decrease in
mitochondrial function, although in this case, ROS pro-
duction appears to be reduced. In the same study, when
older subjects were under a regimen of physical exercise, an
improvement was found in their mitochondrial function, as
well as a concomitant increase in ROS production [38], which
apparently counteracted the effect of aging at the molecular
level with respect to mitochondrial function.

Therefore, these apparently contradictory results can be
conciliated on the basis of equilibrium between the amount
of ROS generated, which can be beneficial or defective,
and the amount of oxidized proteins, depending on the
tissue and its metabolic status. As a result of the analysis of
cumulative evidences, two general characteristics responsible
for the degree of high maintenance of long-lived animals
emerge: a low generation rate of endogenous damage and
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the possession of macromolecules that are highly resistant to
oxidative modification [37].

To detect protein oxidation, carbonyls are the most com-
monly employed marker, and the use of 2D gel electrophore-
sis has provided very useful results for the study of spe-
cific carbonylated protein spots during oxidative stress and
replicative senescence [39, 40]. Although MS is currently the
most versatile technology in proteomics for the identification
of proteins and their carbonylated residues, some limitations
have led to the development of alternative strategies, such as
fluorescent probes, which are able to detect lower abundance
carbonylated proteins [20]. Additionally, cysteine oxidation
became important because these lie precisely at the interface
between Redox-sensitive and oxidative damage by ROS or
nitrogen species during stress [41]. Interestingly, a highly
significant inverse correlation between long lifespan and the
percentage of mitochondrial cysteine is found in metaexami-
nations of genomic sequences (mitochondrialDNA) from218
animal species (chordates and arthropods) [42], supporting
the previously mentioned free radical theory of aging and
point out the relevance of the vulnerability of the proteins in
the organism to oxidative stress in terms of its lifespan.

Taking into account the alterations of metabolism in
humans, the Cornelia de Lange syndrome is a rare mul-
tisystem disorder characterized by distinctive craniofa-
cial dysmorphia, upper limb malformations, hirsutism,
microcephaly, cardiac defects, gastroesophageal dysfunc-
tion, growth retardation, and neurodevelopment impairment
ranging from moderate to severe, with a wide range of vari-
ability [43]. Patients present a premature aging process, and it
is likely that a reduction in energy and the downregulation of
proteins involved in antioxidant and detoxification pathways
could lead to premature physiological aging and genome
instability [44].

On the other hand, a possiblemodel of longevity has been
described; it is based on the knocking out of type 5 adenylyl
cyclase (AC5) [45]. Adenylyl cyclase (AC) is a key enzyme
that catalyzes the synthesis of cyclic adenosine monophos-
phate (cAMP) from ATP and it plays a pivotal role in
𝛽-adrenergic receptor signaling. In these AC5 KO mice,
activation of the Raf/Mitogen-activated protein kinase/MAP
kinase kinase (Raf/MEK/ERK) signaling pathway is present,
which in turn promotes the upregulation of Mn-superoxide
dismutase (Mn-SOD) and results in protection from oxida-
tive stress and apoptosis, retarding aging phenotypes in the
heart and bone and increasing resistance to stress, which
leads to longevity in the lifespan, suggesting that retarding
aging in an individual organ could be a fundamental therapy
to prevent age-related diseases [46].

Delving deeper into the identification of proteins involved
or affected by aging, postmitotic tissues have received more
attention. Neurons, myocytes, and red blood cells have been
studied during the aging process, and certain particular and
some common factors have been discovered. In the following
sections, the main advances in proteomics studies of these
post-mitotic cells are presented.

5. Proteomic Studies Further
Support Parallelism between Aging
and Neurodegenerative Diseases

An increase in oxidative stress in the brain is part of normal
aging and is related directly to decreased neurological activ-
ities and inversely to lifespan [47]. Common pathological
pathways that are implicated both in aging and in the devel-
opment of neurodegenerative disease include free radical
damage and decreased energy production as characteristic
hallmarks [48]. Consistent with this idea, proteins that
increase with aging in the mice hippocampus are mainly
enzymes that mediate energy production and oxidative stress
[49]. In addition, one of the cellular processes that are altered
mainly in the aging hippocampus is that of oxidative stress,
as well as that of protein processing [50].

Consistent with previous ideas, wide proteomic analysis
of brains during aging in mice identifies 40 proteins that
exhibit changes in their natural pattern during the mouse
lifespan (from 4 days to 15 months of age), showing that six
proteins increased and 27 decreased in various ways. When
analyzed together, the biological processes in which those
proteins are involved correspond mainly to the following:
protein metabolic processes (more than one third); transport
(one third); nucleotide and nucleic acid metabolic process
(one fourth); intracellular signal cascade (nearly one fifth),
and response to stress proteins (more than one sixth). Addi-
tionally, about one fifth of the identified proteins can be
localized in the mitochondria and the majority of these
are related to energy metabolism [51], providing a broad
panorama of proteomic changes in the brain during aging.

In addition, there is increasing evidence that protein oxi-
dation is involved in the pathogenesis of Alzheimer’s disease
(AD), a neurodegenerative disorder associated with cognitive
decline, oxidative stress, and aging [52–56]. Two initial
studies using the proteomic approach have identified proteins
that are specifically oxidized in AD [54, 55]. In the first
study, three key enzymes in cellular metabolism, creatine
kinase BB (CK BB), glutamine synthase (GS), and ubiq-
uitin carboxy-terminal hydrolase L-1 (UCH L1), resulted
as specific targets of protein oxidation in the brain of
AD patients. In the second, a couple of additional targets
were detected: dihydropyridine-related protein-2 (DRP-2),
involved in axonal growth, and 𝛼-enolase, involved in gly-
colysis for energy metabolism and therefore related with
the cerebral decrease of energy metabolism. These results
strongly suggest that the process of free radical-mediated
protein modification may be a crucial event in AD and that
protein oxidation is a relevant part of the mechanism of
neurodegeneration in AD brain.

Although in a pilot study of abundant carbonylated
proteins in the cerebrospinal fluid of probableADpatients the
extent of carbonylation did not vary in general, two proteins
were detected that were highly carbonylated when compared
to controls: immunoglobulin 𝜆 light chains and one uniden-
tified protein [57], which suggests that further studies could
be performed focusing on less abundant proteins, modified
by oxidative stress, to detect some probable markers of early
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pathological stages. Therefore, the establishment of differ-
ences in protein oxidation state may provide a diagnostic tool
for neurodegenerative diseases.

Additionally, Weinreb et al. found a significant paral-
lelism in the protein profile affected between aging and
neurodegenerative diseases in the hippocampus of rats [58].
They found that in the aged hippocampus, oxidative stress
and mitochondrial dysfunction are important and that in
treatment with an anti-AD drug, Ladostigil, or with an anti-
Parkinson drug, Rasagiline, both drugs reversed the effect
of aging on various mitochondrial and key regulator genes
involved in neurodegeneration, cell survival, synaptogenesis,
oxidation, and metabolism. Another consequence of oxida-
tive stress in the brain includes the generation of RNS. The
cerebellum is especially vulnerable to oxidative stress and
exhibits an age-dependent increase of total 3-nitrotyrosine
(3-NT) [59, 60], and some proteins have been identified as
targets for nitration [59].

Additionally, in cultured neurons exposed to amy-
loid beta (A𝛽) (1–42), two proteins are significantly oxi-
dized: 14-3-3𝜉 and glyceraldehyde-3-phosphate dehydroge-
nase (GAPDH), and pretreatment with 𝛾-glutamylcysteine
ethyl ester, a compound that supplies the limiting substrate
for antioxidant glutathione synthesis, protects both proteins
from oxidation by A𝛽 1–42 [61], which is consistent with the
notion that antioxidant therapies may potentially be effective
in slowing or ameliorating the neurodegenerative disease
process [56, 62].

Conversely, the other cell type that is more abundant in
the central nervous system, the glial cells, are more resistant
than neurons to oxidative stress and are able to respond to
protect them [63–66]. Surprisingly, proteomic studies that
focus on the role of glial cells during aging, or in neuro-
degenerative diseases, in response to oxidative stress are
very scarce. Miura et al. proposed that aging does not sup-
press the astrocytic capability to respond to oxidative stress.
The authors found that 𝛼-tubulin was subjected to tyrosyl
phosphorylation by H

2
O
2
-exposure and that aging enhanced

this phosphorylation and prevented the formation of micro-
tubules, but aging does not suppress the responses aimed at
cell protection against severe oxidative stress [67]. Therefore,
proteomic studies on the response of glial cells to oxidative
stress during aging and in neurodegenerative diseases, focus-
ing on their helping role for neuron metabolism, represent a
promising avenue that is yet to be explored.

6. Aging in Cardiac and Skeletal
Muscles Altered Energy Metabolism
and Mitochondria

Cardiac performance declines with age [68] in a clear associa-
tionwith oxidative stress [3]. Accordingly, aging is a factor for
cardiovascular disease. It appears that the protein signature
or proteomic phenotype that changes during aging in the
rodent heart renders the tissue more sensitive to oxidative
stress damage with age by modifying the energy metabolism,
particularly carbohydrate metabolism, fatty acid oxidation,

cellular respiration, and energy production and their capacity
to respond to oxidative stress [69].

In the aged rat heart, several proteins have been identified
as differentially expressed when compared with those of
young hearts [69–71], although there are many differences
among studies, probably derived from methodologically dif-
ferent approaches and species particularities (mouse or rat),
also due to the fact that many proteins change consistently
during aging. Additionally, a study of a heart failure model,
transverse aortic constriction in mice, demonstrated a differ-
entially expressed protein expression of structural, signaling,
and redox proteins [72]. Thus, it is possible to establish
parallelism between aging heart dynamics and heart failure,
both altering structural proteins as well as the oxidative
metabolic profile and affecting the heart’s capacity to respond
adequately to oxidative stress during aging or under patho-
logical distress.

Among the functional consequences of oxidative stress
induced by ROS and RNS on cardiac and skeletal muscle
tissue during aging, we find protein nitration [73], which
may affect protein structure, function, and turnover. Thus,
the accumulation of nitrated proteins in cardiac and skeletal
muscle tissue [74, 75] may define the progress of biological
aging or of any pathology.

7. During Red Blood Cell Aging, Hemoglobin-
Generated Oxidants That Affect
Cellular Membrane and Cytoskeleton

Many of the cell processes associated with the physiological
removal of red blood cells (RBC) involve oxidative stress,
which is generated by both endogenous hemoglobin (Hb)
auto-oxidation and exogenous oxidants, which can result
in functional impairment and in cellular aging [76]. The
predominant factor that determines oxidative stress in RBC
is Hb. The superoxide, H

2
O
2
, hydroxyl radicals, ferrylHb,

oxoferrylHb, and peroxynitrite generated by redox reactions
near the membrane can damage RBC membrane proteins,
lipids, and the cytoskeleton, which are responsible for main-
taining the RBC shape and deformability, thus being able
to damage and promote cellular aging [77]. Consequently,
instead of required large concentrations of antioxidants to
neutralize the ROS species formed, blocking Hb interaction
with the membrane will make it possible to eliminate Hb-
generated oxidants, preventing oxidative stress in RBC [76].
In RBC, and due to their extensive use for blood transfusions,
their oxidative stress is also highly relevant during long-
term storage [78]. Consequently, the proteomic approach has
been useful to identify molecular markers, such as Prx2,
as a candidate biomarker for RBC oxidative injuries under
blood bank conditions [79], possibly to be utilized in future
blood component programs to improve the quality of stored
RBC and to limit or avoid the risk of posttransfusional
complications.

In brief, and beyond the cell type affected, on the basis of
extensive experimental results, themain cellular dysfunctions
directly caused by oxidative stress imbalance and by uncon-
trolled generation of ROS can be summarized as follows
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Figure 3: Cellular dysfunctions in aging or in age-related diseases by oxidative stress imbalance. (1) Cell metabolism generates reactive
oxygen species (ROS) and reactive nitrogen species (RNS), which in turn causes oxidative/nitrosative damage. (2) Proteins are the most
affected macromolecules by oxidative stress, undergoing several modifications that avoid their being correctly degraded and recycled
by the proteasome, thus generating impaired protein function. (3) Oxidative stress also directly affects cytoskeletal proteins, causing
structural damage and signaling alterations. (4) On affecting the mitochondria, oxidative stress alters energy production and (5) on affecting
peroxisomes, oxidative stress alters correct metabolic functioning. (6) Oxidative stress also affects the cellular membrane. (7) Finally, all of
the previously mentioned affections cause an alteration in the transcriptional activity of the cell, leading to an altered gene expression that in
turn leads the cell to the aging process or to degenerative disease.

(Figure 3). Whether from self-cell metabolism or from
extracellular sources generating an uncontrolled increase
of ROS and RNS, both of these produce cell damage by
modifying proteins (mainly by carbonylation, sulfoxidation,
hydroxylation, nitration, and S-thiolation) and avoiding the
recycling of these by the proteasome, yielding impaired
protein function. Additionally, oxidative stress can directly
affect the cellular membrane, causing lipid peroxidation, thus
instability, and can also modify cytoskeletal proteins, causing
structural damage andmoreover altering signaling pathways.

Furthermore, oxidative stress directly affects mitochondria
and peroxisomes, thereby altering cell metabolism and
energy production. Taken together, these alterations would
be able, in some manner, to distress nuclear transcription
and generate altered gene expression during normal aging,
or leading to disease. Although this is a general panorama,
there are more specific alterations depending on the cellular
type affected or on the tissue or organ altered. Therefore, it is
a priority to establish more models to study the whole effect
of oxidative stress during aging and disease.
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8. Particular Organisms as Alternative
Models for Studying the Proteomics of
Oxidative Stress during Aging

In addition to the more widely used models employed to
study aging (such as rodents like mice or rats, cultured
line cells, or even tissue fragments, blood, or serum),
other particular organisms represent suitable alternatives for
approaching the problem. In Table 2, we summarize some of
themainworks that, based on theirwide proteomic approach,
deal with the aging process, selecting those that have obtained
results that are clearly related with the involvement of
oxidative stress and ROS in the aging process. The following
is a brief summary of some particular models and their
contribution to elucidating the participation of oxidative
stress during aging.

The invertebrateCaenorhabditis elegans has been success-
fully used to study the aging process. It has been described
that some proteins are involved in both cellular senescence
and the ROS-induced condition. By using interfering RNA
(iRNA) against some genes, a substantial reduction can be
caused in adult lifespan, and the defensivemechanism against
external oxidative stress is also disturbed [80]. Therefore,
some proteins whose expression is increased with cellular
senescence and oxidative stress play a protective role against
these processes. Additionally, when C. elegans is submitted
to oxidative stress through sublethal short-treatment of
peroxide (H

2
O
2
) stress, the majority of worms experience

severe, yet fully reversible, behavioral changes that are highly
reminiscent of well-known age-related changes [83], such
as declines in body movement, pharyngeal pumping, and
reproduction, as well as morphological changes and reduced
metabolic activity [83], which supports the Harman free
radical theory of aging, but would also include the potentially
beneficial aspects of ROS as modulatory second messen-
gers that affect stress resistance and longevity early in life
[83]. In another example, C. elegans xpa-1 mutants, which
are ultraviolet-light (UV)-sensitive and that have reduced
capacity to repair UV-induced DNA damage [112], exhibit
oxidative stress and its antioxidant defenses are induced,
and they also show polyubiquitinated protein accumulation
[84]. Obviously, there are differences between nematode
(invertebrate) and mammalian (vertebrate) systems, but the
fundamental mechanism of cellular senescence may be evo-
lutionarily conserved.

Another very attractive model for studying the effect of
oxidative stress during aging is the senescence-accelerated
probe-8 (SAMP8) mouse, which exhibits age-related deteri-
oration in memory and learning, along with an increase in
oxidative markers and which is considered a useful model
for the study of AD [113]. In AD, it has been demonstrated
that treatment with 𝛼-lipoic acid, a coenzyme involved in the
production of ATP in mitochondria and a potent antioxidant
[114, 115], is able to reduce oxidativemodification and increase
the protein level of 𝛼-enolase, suggesting the possibility
that the reduced glucose metabolism and neurochemical
alterations in SAMP8 mouse brains can be reversed [116].

Additionally, it has been demonstrated that carbonyl mod-
ification of Cu, Zn-superoxide dismutase (Cu, Zn-SOD) in
liver and hippocampal cholinergic neurostimulating peptide-
precursor protein (HCNP-pp) in the brain were higher
in SAMP8 compared with the control, SAMR1. Therefore,
progressive accumulation of oxidative damage to Cu, Zn-
SOD may cause dysfunction of the defense systems against
oxidative stress in SAMP8 with higher oxidative states,
leading to the acceleration of aging [85].

A different and very interesting organism for studying the
effect of oxidative stress during aging is the naked mole-rat
(H. glaber) because it has very low metabolic and respiratory
rates and its protein structure and function is not apparently
affected by either oxidative stress or carbonylation during
aging, probably due to a particular characteristic of the cel-
lular environment that maintains the functional structure of
proteins [104]. As an example, activation of theNuclear factor
[(erythroid-derived 2)-like 2] (Nrf2) antioxidant response
pathway, which increases the transcription of antioxidant
response-element genes, proteasomes, and antioxidants and
which affects the efficient maintenance of protein homeosta-
sis, can protect proteins from misfolding or aggregation by
oxidative stress [117, 118], being part of a protective cellular
environment that efficiently maintains protein homeostasis
as part of a potential plausible mechanism that explains the
exceptional longevity of the naked mole-rat [104].

Finally, an attractive model for the aging human brain is
the aging beagle (canine) brain, especially also as a model of
AD [119–122]. In the aging canine brain, a proteomics study
reveals that a combined treatment of antioxidant-fortified
food and an enriched environment reduces the levels of
oxidative damage, improves the antioxidant reserve systems,
increases the activity and expression of key endogenous
antioxidant enzymes, and may contribute to improvements
in learning and memory [106].

9. Concluding Remarks

One limitation of some of the reports presented here is that
details regarding animal ages, care, and behavior assess-
ments/measures are limited, which impedes cross-study
comparison and meta-analyses. Also, cell types and their
particular characteristics rendered comparison of the effect
of ROS on RBC or neurons difficult, for example, as well as
under in vitro or in vivo conditions.Thus, therefore more and
wider studies are needed.

In humans, it is difficult to compare among proteomic
studies because of insufficient characterization of the study
material, the small number of patients involved in studies,
and variations in experimental designs. At present, basic
aging research has arrived at a pharmaceutical phase, with
the testing of novel drugs designed to extend a healthy
life by targeting specific biochemical pathways, perhaps in
specific organs [123]. In this respect, the National Institute on
Aging Interventions Testing Program (ITP) experimentally
evaluates chemical compounds with potential senescence-
retarding effects that can be administered to mice in food or
water [124]. While initial results are far from surprising, the
experimental design is robust; therefore, it will be useful in
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order to develop a similar program in mouse genetics in
aging.

It is evident that the sole fact of identifying the whole
genome sequence of an organism, or to know the whole
isoforms and modifications of its products (proteins), is not
sufficient for complete elucidation of the aging process. It
is necessary to integrate all of this information in a func-
tional manner that reflects more precisely the real situation.
Therefore, as important as the generation of all “omic” infor-
mation is, the development of instruments to analyze and
evaluate this efficiently is equally important. In this regard,
bioinformatics and computational biology are devoted to
performing these analyses, both based on systems biology,
that is, the construction of gene, protein, and metabolic
pathway networks that interact among them to constitute
functional modules (Figure 1). In turn, they integrate design
models for prediction from clinical phenotypes to diagnostic
and therapeutic strategies after experimentation takes place.
Albeit proteomics has already contributed relevant insights
in the field of aging research and attempts have been
made, in animal models such as mice to map aging-related
brain proteins within the context of the biological processes
involved [51]; a reference mapping of proteins in healthy
aging human subjects has yet to be performed. Nonetheless,
with the continued advances in proteomic technology, the
study of the proteome during aging is entering a brand new
phase of discovery.
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“Proteomic analysis of protein nitration in rat cerebellum: effect
of biological aging,” Journal of Neurochemistry, vol. 100, no. 6,
pp. 1494–1504, 2007.
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