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ABSTRACT 

A new analysis of a previously studied traveling agent model, showed that there is a relation between the degree of ho- 
mogeneity of the medium where the agents move, agent motion patterns, and the noise generated from their displace- 
ments. We proved that for a particular value of homogeneity, the system self organizes in a state where the agents carry 
out Lévy walks and the displacement signal corresponds to 1/f noise. Using probabilistic arguments, we conjectured that 
1/f noise is a fingerprint of a statistical phase transition, from randomness (disorder) to predictability (order), and that it 
emerges from the contextuality nature of the system which generates it.  
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1. Introduction 

Phenomena with Lévy like distributions have been widely 
reported, e.g. in experiments with CTAB mielles dis- 
solved in salted water [1], chaotic transport in a laminar 
fluid flow of a water-glycerol mixture in a rapidly rotat- 
ing annulus [2], subrecoil laser cooling [3], conservative 
motion in a two dimensional periodic poential [4], trans- 
port in heterogeneous catalysis [5], reactions and in poly- 
mer systems under conformational motion [6], in the de- 
scription of behavior of dynamical systems [7], economic 
time series [8] and in the motion of gold nanoclusters in 
graphite [9].  

The foraging patterns of a variety of animals [10-15] 
involve many spatio-temporal scales and are sometimes 
well described by Lévy walks. A good review on the 
subject may be found in [16]. This statistical behavior 
has also been reported in human movement patterns [17].  

In this context, Boyer and López-Corona [18] intro- 
duced a model of traveling agents (e.g. frugivorous ani- 
mals) who feed on randomly located vegetation patches 
and disperse their seeds. The foraging agents use a de- 
terministic strategy with memory, that makes them visit 
the largest possible patches (most food content) accessi- 
ble within minimal traveling distances. If the patches 
have a small initial size, the vegetation total mass in- 
creases with time and reaches a maximum corresponding 
to a self organized critical state with power-law distrib- 

uted patch sizes and Lévy-like movement patterns for the 
foragers. They proved that the distribution of resources is 
not held fixed and spatial heterogeneities self organize 
spontaneously under the influence of positive feedback 
loops in the system dynamics. Particularly, at low plant 
competition, the power spectrum of biomass time series 
correspond to a 1/f noise.  

Pink or 1/f noise (sometimes also called Flicker noise) 
is a signal or process with a frequency spectrum such that 
the power spectral density is inversely proportional to the 
frequency [19]. This statistical behavior appears in such 
diverse phenomena as Quantum Mechanics [20-23], Bi- 
ology [18,24,25], Medicine [26] and Astronomy [27], 
among other fields. The frequent occurrence of pink 
noise in such a seemingly unrelated set of physical sys- 
tems, has prompted an extensive search for common un- 
derlying physical principles [28].  

It is clear that 1/f noise is part of a wider set of scale 
invariant signals defined by an inverse power law power 
spectrum of the form  

  1 ,S f f                  (1) 

where λ is the spectral density exponent, which classifies 
the signals depending of its value: λ = 0 for white noise, λ 
= 1 for pink and λ = 2 for brown noise. These tree types 
of noise exhibit quite different statistical characteristics.  

Let’s define (following [29]) the autocorrelation func- 
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tion as the inverse Fourier transform of the power spec- 
trum of the signal  

   1C F S f

a

.             (2)  

If the power spectrum obeys the power law of Equa- 
tion (1), and we apply a scale transformation in the time 
domain,    

 1 ,a C

 then  

 C a  

 0   2

            (3) 

and the general solution of Equation (3) is also a power 
law. In this way, one possible complexity measure is the 
memory of the time series, as expressed by the autocor- 
relation function which measures how quickly the time 
series looses similarity with a copy of itself displaced 
with some delay time τ. The correlations are zero for 
white noise , large for brown noise  , and 
infinite for a periodic series     . When  1   
corresponds to a very special case, as we show below. 
We shall see that the parameter λ gives a measure of the 
correlation strength and may be used as a control pa- 
rameter for complexity.  

A complex system [30] is a special type of dynamical 
composite system [31], where under critical circum- 
stances new collective behavior emerges from the short- 
range interactions between the constituent parts. Intui- 
tively, complexity is inversely related to a simple behav- 
ior, i.e., the more we are able to provide a simple de- 
scription of a phenomenon, the less complex it is. Un- 
correlated random signals (white noise) may be highly 
unpredictable even in cases where the past history is fully 
known but, at a global level, they admit a very simple de- 
scription and, therefore, are not really “complex”. From a 
complex-systems approach, random uncorrelated series 
are among the least complex signals, and those with long- 
range correlations are among the most complex [29].  

The autocorrelation function of white noise follows a 
power law with ; strongly correlated Brownian 
noise, although composed mostly of low-frequency and 
thus large-period waves, has only local, short-term cor- 
relations between neighboring points [32]; finally the 
autocorrelation function for 1/f noise is a logarithmic 
function, which decays more slowly than any power law. 
Thus 1/f noise has the largest possible memory for a scale 
invariant signal and therefore, under our definition, is the 
most complex signal too.  

 0 

1k k 

In recent works Eliazar and Klafter [33,34] showed 
that both Lévy walks and 1/f are the result of systems 
which superimpose the transmissions of infinite inde- 
pendent stochastic signals.  

With this in mind, we proceeded to investigate under 
which conditions, if any, the power spectra of the agents 
motion (Lévy walks) follow a 1/f dynamics. We found a 
non trivial relationship between the media’s homogeneity 
coefficient β, the agents motion and the noise type ob- 

served. These results (Figure 1 and Table 1) are new and 
constitute our main result.  

2. Method: A Traveling Agent Model  

Let’s consider a two-dimensional square domain of unit 
area with N fixed, point-like food patches randomly and 
uniformly distributed. Each patch contains a k amount of 
food.  

Initially, an agent is located on a patch chosen at ran- 
dom. Then the following deterministic foraging rules are 
iteratively applied at every time step:  

1) The agent located at patch i feeds on that patch, the 
fruit content decreasing by one unit: .  i i

2) When ik  has reached the value 0, the agent 
chooses another patch, j, such that j ij  is maximal 
over all the allowed patches j = i in the system, where kj 
is the food content of patch j and ij  the Euclidean dis- 
tance between patches i and j. With this rule, the next 
visited patch (the “best” patch) has a large food content 
and/or is at a short distance from i. It is assumed that the 
travel from i to j takes one time unit.  

k d

d

 R t

3) The agent does not revisit previously visited patches.  
The model exhibits some remarkable properties. Let’s 

define the agents displacement  as  
   0 0  with R t t R t  R t  the agent position at time t. 

When averages are taken, different times t0 and inde- 
pendent realizations are considered. If the patch size k is 
taken froman inverse power-law distribution  P k ck  , 
where c is an arbitrary constant and β is a coefficient that 
represents the medium homogeneity. When β is high 
 1 

1

 the medium is very homogeneous, meaning 
that all patches have similar food content values. On the 
contrary, when β is low (  

3

) the medium is very het- 
erogeneous, meaning that patches with high food content 
are numerous. The intermediate case (   ), corre- 
sponds to a complex medium where patches with high 
and low food contents are present.  

This model produces complex trajectories that have 
been studied in detail in refs. [35,36] and discussed in 
connection with spider monkeys foraging patterns ob- 
 
Table 1. Relation between media homogeneity coefficient β, 
type of medium, agents motion, and the noise type observed. 

β Medium Motion Noise Dynamic 

2
Inhomogenous 

(spatial disorder)
Random 
confined 

White 
Randomness-no 

correlation  
(dynamic disorder)

3
Transition  

point (spatial 
complexity) 

Lévy Pink: 1/f 
Transition point 

(criticality) 

5
Homogeneous 
(spatial order)

Brownian Brown 
Predictability-strong 

correlation  
(dynamic order) 
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Figure 1. Examples of agent walk (first column) and the corresponding power spectrum (second column) for three values of 
themedium homogeneity coefficient β = 2 (homogeneous medium), β = 3 (complex medium) and β = 5 (inhomogeneousme- 

ium). d 
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served in the field [11]. The different media types pro- 
duce distinctive motion patterns summarized in Figure 1.  

3. Results  

In Figure 1, three values of  corresponding 
to disordered, complex and ordered media where used to 
construct time series for 

 2,3,5 

 R t

. The power spectrum 

defined by     S f R f R f    with R f  the Fou- 
rier transformation of the agent displacement, was calcu- 
lated for each independent run using the fast Fourier 
transform (fft) technique. In Table 1, 50 power spectra 
were averaged and fitted by an inverse power law  
 S f f  . White noise corresponds to a 0  , pink 

to a 1  , and brown to a 2  .  
Figure 2 shows the spectral exponent λ as a function 

of the medium homogeneity coefficient β. Statistics were 
taken from the same 50 independent realization used for 
Table 1.  

The analysis of time as a function of the step number 
(Figures 3 and 4), revels that the systems transit from a 
nonstationary to a stationary regimen. A second deriva- 
tive parameter  

 
     

2 2

3
d d

1 1

n
T n n

T n T n






  
3

2
n

T n


 
 

was calculated in the third step of the walk in order to 
capture the transitory part of the signal.  
 For β = 3.0 the system is highly non-stationary (ξ big) 

reaching the stationarity only for very big times  
 For 3.0 ≤ β ≤ 4.0 the system is near the stationarity (ξ 

small).  
 For β ≥ 4.0 the system is highly stationary (ξ tends to 

zero)  
The system experiments a sudden transition from non- 

stationarity to stationarity in β = 3.0 which may be seen 
as a phase transition fingerprint.  

These results suggests that the emergence of pink 
 

 

Figure 2. For each realization the power spectrum was con- 
structed and the spectral exponent calculated. Then aver- 
ages were taken for 50 independent realization.  

 

Figure 3. Discrete first derivative of time in function of the 
step number. 
 

 

Figure 4. Discrete second derivative of time as a function of 
step number n, calculated in the third time step of the walk 
for capture the transitory part of the process. 
 
noise for a traveling agent in a heterogeneous medium 
depends on the degree of heterogeneity of the medium. If 
the medium homogeneity coefficient is distributed as a 
power law  P K cK  , then a 1/f noise will be ob- 
tained when β = 3. Thus, this dynamical behavior may 
naturally arise from the motion of agents in a complex 
medium.  

4. Conclusions  

Our results suggest that 1/f noise may be a fingerprint of 
a statistical phase transition from randomness (low cor- 
relation associated with white noise), to predictability 
(high correlation associated to brown noise) an idea sug- 
gested in [37]. The authors proved that a transitional state 
in two different regimes implies the occurrence of 1/f 
time series and that this property is generic in both clas- 
sical and quantum systems. They showed this by study- 
ing a classical system, the one-dimensional module-1 
logistic map and a quantum one, the nuclear excitation 
spectra obtained with a schematic shell-model Hamilto- 
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nian.  
Moreover, Relano et al. [38] proposed to interpret 

fluctuations in quantum excitation spectra as generalized 
time series and to study the corresponding power spectral 
density. While quantum excitation spectra (which is 
known to be chaotic) result in 1/f noise, the integrable 
excitation spectra follow instead a Brownian noise signal 
1/f 2. In the same line of thought, autonomous (involun- 
tary) physiological time series are found to correspond 
with   1S f f   power spectral density. Time series 
from healthy subjects are found to approach  1 1f   , 
and results have been reported for the fluctuations asso- 
ciated to heartbeat, gait, temperature, respiration [32,39- 
41]. On the other hand, time series from aging subjects 
tend toward  2 2f  1  [42], while particular phe- 
nomena, such as heart fibrillation, tend to flatten out the 
power spectral density towards  [43,44]. It has 
been suggested that the 1/f in healthy physiological sys- 
tems indicates a critical state, and that deviations indicate 
aging or disease.  

 0 

The main result of our work is the relationship be- 
tween the media’s homogeneity of a traveling agent mo- 
tion and the noise type observed. Of special interest is 
that 1/f noise is found when medium is complex. Addi- 
tionally, we conjecture that 1/f noise is a fingerprint of a 
statistical phase (perhaps of second order) transition from 
randomness (low correlation associated with white noise), 
to predictability (high correlation associated to brown 
noise). Nevertheless a more detailed analysis should be 
carried out for prove this last point.  

Finally, most interesting, but at this point somehow 
speculative, is the possible relation between 1/f and sta- 
tistical contextuality. Meanwhile Eliazar and Klafter [33, 
34] have proven that both Lévy walks and 1/f are the 
result of systems which superimpose the transmissions of 
infinite independent stochastic signals, it has been pro- 
posed that this would require a non-classical probabilistic 
theory, i.e. statistical contextuality [45-47]. Then we pro- 
pose that 1/f ubiquity is a consequence of contextuality 
ubiquity in Nature.  
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