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Paracrine roles of cellular senescence in promoting
tumourigenesis
Jose Mario Gonzalez-Meljem1,2, John Richard Apps1, Helen Christina Fraser1 and Juan Pedro Martinez-Barbera1

Senescent cells activate genetic programmes that irreversibly inhibit cellular proliferation, but also endow these cells with
distinctive metabolic and signalling phenotypes. Although senescence has historically been considered a protective mechanism
against tumourigenesis, the activities of senescent cells are increasingly being associated with age-related diseases, including
cancer. An important feature of senescent cells is the secretion of a vast array of pro-inflammatory cytokines, chemokines, and
growth factors collectively known as the senescence-associated secretory phenotype (SASP). Recent research has shown that SASP
paracrine signalling can mediate several pro-tumourigenic effects, such as enhancing malignant phenotypes and promoting
tumour initiation. In this review, we summarise the paracrine activities of senescent cells and their role in tumourigenesis through
direct effects on growth and proliferation of tumour cells, tumour angiogenesis, invasion and metastasis, cellular reprogramming
and emergence of tumour-initiating cells, and tumour interactions with the local immune environment. The evidence described
here suggests cellular senescence acts as a double-edged sword in cancer pathogenesis, which demands further attention in order
to support the use of senolytic or SASP-modulating compounds for cancer treatment.
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INTRODUCTION
The field of senescence has greatly expanded since the
sensencent cell state was first observed in normal human
fibroblasts, by Hayflick and Moorhead, over half a century ago.1

Initially referring to the finite proliferative capacity of cells in vitro,
senescence is now defined as a cellular state of stable and long-
term loss of proliferative capacity, but with the retention of normal
metabolic activity and viability. It is characterised by specific
changes in morphology (e.g. enlarged and flat cells), metabolism
(e.g. increased glycolysis over mitochondrial oxidative phosphor-
ylation), and cell physiology (e.g. resistance to apoptosis).2–5

Senescence serves as a response to stress, and several inducing
stimuli have now been identified including chemotherapeutic,
radiation and oxidative stress, amongst others (Fig. 1). Activation
of the senescence programme leads to cellular and molecular
changes such as proliferation arrest, chromatin remodelling,
elevated expression of cell cycle inhibitors (such as p16INK4A or
p21CIP1), activation of a DNA damage response, enlargement of
the lysosomal compartment, and activation of a senescence-
associated secretory phenotype (SASP).5,6 The SASP mediates the
paracrine activities of senescent cells through the secretion of a
myriad of factors including cytokines and chemokines (e.g. IL1α,
IL1β, IL6, IL8, CXCL1, CXCL2), growth factors (e.g. amphiregulin,
EGF, BMPs, FGFs, VEGF, WNTs), extracellular matrix (ECM)
components (e.g. fibronectin), and proteases (e.g. MMPs, plasmi-
nogen activators), as well as exosome-like small extracellular
vesicles.7,3,8–11 The composition and intensity of the SASP
response can be affected by several factors including the
senescence-inducing mechanism, cell type, and the amount of

time passed since senescence initiation, indicating that there is no
singular SASP.12–17

SASP effects can be beneficial or deleterious for normal
physiology depending on its composition, intensity, and the local
tissue microenvironment. Furthermore, the SASP is involved in
valuable physiological processes such as promoting tissue
repair,18–20 fine-tuning the development of embryonic struc-
tures,21–23 and stimulating immune surveillance.24,25 However, the
deleterious consequences that result from ineffective clearance of
senescent cells and their over-accumulation in tissues can
promote age-related diseases and cancer.2,26–30 Supporting this
notion, the burden of senescent cells in tissues increases
significantly with age in mice, primates, and humans,27 and they
can be found in both benign and malignant tumours.31–35

Importantly, genetic or chemical ablation of senescent cells in
mouse models delays the onset of age-related disorders, including
cancer, leading to increased life-spans and promoting tissue
rejuvenation in late life.36–38

Senescence was traditionally considered an innate anti-cancer
mechanism as it can serve to eliminate damaged cells,3,5

whereby activation of the senescence programme in cells
harbouring oncogenic mutations serves as a tumour suppressor
mechanism, preventing the expansion of these mutated cells
and progression into malignancies.3,5 However, the role of
senescence in tumourigenesis has been revised in recent years.
There is mounting evidence that dysregulation or inappropriate
activation of senescence contributes to tumour progression and
malignancy.5,7,17 This review will discuss the paracrine effects of
senescent cells on different aspects of tumour cell behaviour
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including: (i) direct effects on growth and proliferation of
tumour cells; (ii) tumour angiogenesis, invasion, and metastasis;
(iii) cellular reprogramming and emergence of tumour-initiating
cells; and (iv) tumour interactions with the local immune
environment (Fig. 2). These subdivisions of the senescence-
associated activities are mainly conceptual; senescent cells exert
compounded effects and it is not easy to distinguish between
some of these activities through current experimental
approaches, especially in an in vivo context. For in-depth
discussion of the functions of cellular senescence in physiolo-
gical processes, such as embryological development and tissue
repair, as well as in ageing, we refer the reader to other reviews
in the field.2,3

Growth and proliferation of tumour cells
Cells present in the tumour microenvironment, such as fibroblasts,
can become senescent and promote the growth and proliferation
of tumour cells.7,39,40 This has been demonstrated both in vitro
and in vivo. Co-culture of senescent fibroblasts, induced by
various stimuli (e.g. radiation, DNA damage, replicative exhaus-
tion), can promote the growth and proliferation of benign, pre-
malignant, and malignant cells from a range of tumour
types.9,12,26,41–44 For example, in co-culture assays, radiation-
induced senescent fibroblasts sustained the growth of mammary
epithelial cells that had dysregulated cell cycle and cell death

pathways.44 These in vitro observations have been further
substantiated in vivo, where co-injection of senescent fibroblasts
has been shown to increase tumourigenicity in xenograft models,
including primary breast cancer tissues.26,45–47

The contributions of specific SASP components have been
demonstrated using genetic knockdown, siRNAs, and other
molecular inhibitors.12,26,41,45,46,48,49 The use of siRNA and
blocking antibodies against amphiregulin (AREG) reduced the
growth of benign prostate epithelial cells induced by condi-
tioned media from senescent fibroblasts.48 Furthermore, a
critical role for SASP in the promotion of obesity-associated
liver cancer has been demonstrated using elegant genetic
approaches,50 where deletion of IL1β (Il1b) was sufficient to
reduce the expression of IL6 and CXCL1 in the liver, as well as
the number and size of liver tumours.
Finally, there is evidence showing that the expression of growth

factors alone, including some that fall under the SASP umbrella,
can induce tumours independently in a paracrine/non-cell
autonomous manner.51 For example, expression of fibroblast
growth factor 10 (FGF10) by urogenital mesenchymal cells results
in the induction of multifocal prostatic adenocarcinoma in
epithelial cells.52 Similarly, expression of fibroblast growth factor
19 (FGF19) by skeletal muscle cells has been shown to induce
hepatocellular carcinomas, which acquire somatic mutations in β-
catenin (Ctnnb1).53 These experiments collectively demonstrate
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Fig. 1 Overview of senescence inducers, changes in cell physiology, and activation of the senescence-associated secretory phenotype (SASP).
The senescence programme can be activated by different stress stimuli (shown in blue) such as: cytotoxic chemotherapeutic drugs, replicative
stress (which occurs due to deficiencies in the DNA replication machinery or maintenance of cell cycle checkpoints), ionising radiation,
oncogenic signalling, and oxidative stress. The main cellular and molecular effects are shown in red and include an expansion of the
lysosomal compartment, metabolic and mitochondrial alterations, accumulation of DNA damage and rearrangement of the chromatin
landscape, resistance to apoptosis, and an irreversible arrest of the cell cycle. Most senescent cells also activate a senescence-associated
secretory phenotype (SASP), which is composed of growth factors, cytokines, chemokines, and metalloproteinases. Examples of common
SASP factors are shown. These secreted factors can signal in an autocrine fashion to reinforce the senescence phenotype, or paracrinally with
multiple effects on neighbouring cells. EGF epithelial growth factor, FGFs fibroblast growth factors, BMPs bone morphogenetic proteins, IL1
interleukin 1, IL6 interleukin 6, IL8 interleukin 8, CCL2 C–C motif chemokine ligand 2, MMP2 matrix metallopeptidase 2, MMP3 matrix
metallopeptidase 3
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that the SASP can promote cancer cell growth, challenging the
view that senescence is primordially a beneficial process involved
in preventing cancer progression.

Tumour angiogenesis, invasion, and metastasis
Senescent cells can contribute to the acquisition of invasive and
metastatic properties of cancer cells, as well as the induction of
tumour-associated angiogenesis.7,39 Tumour invasion and
metastasis frequently involve an epithelial to mesenchymal
shift in cellular phenotype (epithelial–mesenchymal transition,
EMT). During EMT, epithelial cells attain key aspects enabling
tumour invasion, including loss of cellular polarity and cell-to-
cell adhesion, and gain of both migratory and invasive
properties. Importantly, it is known that conditioned media
from senescent cells can induce EMT in cell lines derived from
many tumour types, including non-aggressive breast cancer,
mesothelioma, and melanoma, as evidenced by decreased
expression of epithelial markers (e.g. E-cadherin, cytokeratins)
and increased expression of mesenchymal markers (e.g.
vimentin).12,54,55 In addition, individual SASP components can
contribute to induce EMT phenotypes; IL6, for example, has
been shown to have cell-adhesion disrupting actions, which is
an important component of invasion.56 Senescent cells and the
SASP can also guide and promote cancer cell migration/
invasion in models of thyroid and skin cancers.57,58 Further-
more, ablation of senescent cells after chemotherapy can
prevent or delay cancer relapse and spread to distal tissues.59

Tumour invasion and metastasis also involve disruption of the
basement membrane and remodelling of the ECM by matrix
metalloproteinases (MMPs), which are often expressed as SASP
factors.7 Indeed, the invasive properties of several epithelial cell
types are enhanced by MMPs secreted by senescent cells, such
as MMP2 and MMP3.41,43,44

A large number of proangiogenic factors are also known to be
secreted by senescent cells, whereas angiostatic molecules have
not been found to be secreted.27,60 In particular, IL6 has been
reported to promote tumour-supportive angiogenesis in a Ras-
driven tumour model.61 Similarly, co-injection of senescent
fibroblasts or peritoneal mesothelial cells with cancer cells in
xenograft models results in significantly greater tumour angio-
genesis.62,63 These data suggest that the paracrine activities of
senescent cells are involved in the acquisition of malignant and
metastatic phenotypes by signalling to transformed cells or their
microenvironment.

Cellular reprogramming of cells and emergence of tumour-
initiating cells in culture
Tumour cells may exhibit loss of differentiation and may also
attain stem cell characteristics; both features of cancer progres-
sion. In benign tumours and well-differentiated cancers, the
histology of a tumour typically recapitulates the histology of the
tissue of origin. In contrast, undifferentiated cancers have
abnormal histology and typically exhibit more aggressive beha-
viour, as less differentiated cells are usually more proliferative.
Interestingly, the SASP is able to inhibit differentiation both

in vitro and in vivo, while in some cases leads to acquisition of
stem cell characteristics.41,44,54,55,64–66 Exposure of keratinocytes to
the culture medium from senescent cells promotes expression of
tumour stem cell markers, such as CD44, and leads to a greater
regenerative capacity in vivo.65 Similarly, co-culturing undiffer-
entiated myeloma cells in conditioned media from senescent
myeloma cells promotes the emergence, maintenance, and
migration of cancer stem-like cells.64 Higher in vivo expression
of stem cell markers has also been observed in the liver in close
association with GFP-labelled RAS-induced senescent cells.65 In
addition, induction of senescence and SASP in mesothelioma cells
led to the emergence of a subpopulation of highly clonogenic
cells with enhanced ability to form tumours when xenografted in
mice.55 Furthermore, cellular reprogramming, which is the process
by which adult differentiated cells can be induced to become
functionally equivalent to embryonic stem cells, can be induced
in vivo by senescent cells through SASP activation, and this can be
stimulated in different models of tissue damage. While senescence
is a barrier to reprogramming in vitro, the paracrine activities of
senescent cells can promote the expression of stem cell markers
and proliferation of neighbouring cells in vivo,66–68 and IL6 is a key
player in driving this process.
The molecular mechanisms underpinning the paracrine induc-

tion of cancer stem cell features have been variably addressed. For
instance, non-tumourigenic melanoma cells exposed to IL6 or
chemokine ligand-2 (CCL2) develop tumourigenic potential in vivo
in a STAT3-dependent manner.54 In vitro, co-culture experiments
showed that SASP induced the expression of critical reprogram-
ming factors NANOG, SOX2, and OCT4.54 Indeed, it has further
been shown that increased IL6 expression, through induction of
senescence either genetically or from tissue damage, can create a
tissue context that increases reprogramming efficiency in vivo.66

In this sense, a crucial role for the mechanistic target of rapamycin
(mTOR) complex has recently been unveiled, whereby it can either
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counteract or facilitate reprogramming by cell-intrinsic and cell-
extrinsic mechanisms, respectively.69 Together, these data suggest
that senescent cells, through their SASP, can induce undiffer-
entiated cellular states; depending on the context, this can be
beneficial (e.g. tissue regeneration) or harmful (e.g. promotion of
tumour-initiating cells).

Modulation of local immune response and immune evasion by
senescent cells
The relationship between senescence, tumourigenesis, and the
immune system is complex and remains incompletely understood.
Cells undergoing damage-induced senescence are often cleared
by the immune system, as several SASP factors are cytokines and
chemokines that can modulate the local immune environ-
ment.2,3,5,70,71 In this regard, the SASP has been shown to promote
inflammation.7,72

Immune surveillance refers to the removal of pathogens, as well
as pre-malignant and malignant cells, by the immune system. In
some cases, it has been shown that senescent cells are involved in
these processes. For example, senescent cells promote their own
clearance through the secretion of CCL2, which attracts and
activates NK-T cells.73,74 Using a mouse model of liver carcinoma,
p53-deficient RAS-driven tumours induced to senesce through re-
establishment of p53 function exhibited innate immune cells
migrating into the vicinity of the senescent tumour area, leading
to complete tumour regression.24 Such senescence-induced
activation of the local immune system has also been shown to
activate the clearance of pre-malignant hepatocytes.75

In contrast, senescent cells can also promote tumour evasion of
immune surveillance.76,77 During ageing of the skin, senescent
stromal cells and their SASP (particularly IL6) drive an increase in
the number of suppressive myeloid cells in mice and humans.
Furthermore, it was shown that this leads to the inhibition of anti-
tumour T-cell responses and enhanced tumour growth.77 Further
research is required to clarify the factors that control the pro- and
anti-tumour surveillance activities of senescent cells.

CONCLUSION
There is increasing evidence indicating that, in addition to their
cell- and non-cell autonomous tumour-suppressive activities, the
paracrine signals derived from senescent cells have detrimental
roles in aging-related pathogenesis and cancer. Since senescent
cells are generally abundant in benign tumours and also present
at low numbers in several malignancies,31–34,57 their paracrine
activities could contribute to tumour progression and cancer
metastasis. Moreover, it is possible that these activities may also
be involved in the initial steps of oncogenic transformation of
normal cells and tumour initiation, as recently suggested in a
mouse model of a human brain tumour.78 Promising translational
opportunities have emerged in the use of molecules that
selectively target and eliminate senescent cells (termed senoly-
tics), or those that modulate the SASP and its negative effects
(Table 1).79 In this regard, the elimination of senescent cells or

targeting the SASP represents a potential strategy for stopping or
slowing tumour progression, as many activities of senescent cells
promote tumour growth and malignant progression. It may be
expected that the same paracrine activities capable of enhancing
the cancerous phenotype of cells harbouring oncogenic muta-
tions in vitro and in vivo, could also contribute to the initial
epigenetic and genetic alterations that fuel the appearance of
tumour-initiating cells in normal, non-transformed cells.78 If so,
early ablation of senescent cells in pre-malignant lesions using
senolytic compounds or neutralisation of the SASP may provide a
plausible approach to prevent cancer.
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