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A time-series approach to dynamical systems
from classical and quantum worlds

Ruben Fossion

Instituto Nacional de Geriatría, Periférico Sur No. 2767, Col. San Jerónimo Lídice,
Del. Magdalena Contreras, 10200 México D.F., Mexico

Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México,
04510 México, D.F., Mexico

Abstract. This contribution discusses some recent applications of time-series analysis in Random
Matrix Theory (RMT), and applications of RMT in the statistial analysis of eigenspectra of correla-
tion matrices of multivariate time series.

1. INTRODUCTION

Time-series analysis and Random Matrix Theory (RMT) used to be two different fields.
In recent years, however, there have been interesting applications of time-series analysis
in RMT, and vice versa. Time-series analysis is an approach to complex systems where
the dynamics of the system is inferred by a statistical analysis of the fluctuations in time
of some associated observable. Random Matrix Theory (RMT) is a standard technique
in the study of quantum chaos, which includes the statistical study of the excitation
spectrum of a dynamical quantum system. In this contribution, some examples of these
mutual applications are given.

This contribution consists of four sections. In the first section, a standard technique
to study multivariate time series is described, namely Singular Value Decomposition
(SVD), which can be considered as a generalization of standard matrix spectral de-
composition generalized for non-symmetric rectangular matrices. In the second section,
Random Matrix Theory (RMT) and its relevance to the statistical study of quantum ex-
citation spectra is briefly discussed. In the third section, two recent applications of time-
series analysis to RMT are mentioned: a first application applies time-series analysis as
a fluctuation measure for quantum excitation states, and a second application permits to
separate in a data-adaptive way the global trend of a quantum excitation spectrum from
the local fluctuations. In the fourth section, RMT is used to extract statistical information
from the eigen-spectrum of the correlation matrix of a multivariate time series.
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2. MULTIVARIATE TIME SERIES

2.1. Spectral decomposition of square matrices

2.1.1. Right (column) eigenvectors

Let A be a real symmetric matrix with dimensions N ×N. Let the rank of the matrix
be r = rank(A) ≤ N, which is equal to the number of independent columns, and also
equal to the number of independent rows. If we represent vectors as columns, then these
should be placed to the right side of A. For each v⃗k right (column) eigenvector of A, with
k = 1 . . .r, we have then,

A⃗vk = λ v⃗k, (1)

or explicitely, for N = 2,(
A11 A12
A21 A22

)(
vk1
vk2

)
= λ

(
vk1
vk2

)
(2)

The right (column) eigenvectors v⃗k constitute an orthonormal basis for the column space
Rr of A, i.e. v⃗k .⃗vl = δkl , with k, l = 1 . . .r. We can represent the eigenvectors as the
columns of the N ×N dimensional matrix V, and the associated eigenvalues λk as the
elements of the N ×N dimensional diagonal matrix ΣΣΣ (the last N − r rows and columns
can be padded with zeros), so that the relation between matrix AAA and its eigenvectors can
be noted in a compact matrix form as,

AV = VΛΛΛ, (3)

or, explicitely, for N = r = 2, and eigenvectors v⃗1 = (v11,v12)
T and v⃗2 = (v21,v22)

T ,(
A11 A12
A21 A22

)((
v11
v12

)(
v21
v22

))
=

((
v11
v12

)(
v21
v22

))(
λ1 0
0 λ2

)

=

((
λ1v11
λ1v12

)(
λ2v21
λ2v22

))
. (4)

Starting from eq. (3), matrix A can be rewritten as a spectral decomposition,

A = VΛΛΛVT

=
r

∑
k=1

λk
(⃗
vk⃗vT

k
)
=

r

∑
k=1

λkAk, (5)

where we made use of the fact that V is an orthogonal matrix so that V−1 = VT , and
where Ak = v⃗k⃗vT

k = v⃗k ⊗ v⃗k is the vector outside (tensor) product. The r−dimensional
column space of A is decomposed as the direct sum of the 1−dimensional orthogonal
vector spaces spanned by the r eigenvectors v⃗k, Rr = R1 ⊕R2 ⊕ . . .Rr. Explicitly, for
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the case N = r = 2, we have(
A11 A12
A21 A22

)
=

((
v11
v12

)(
v21
v22

))(
λ1 0
0 λ2

)(
(v11 v12)
(v21 v22)

)

=

(
λ1v2

11 +λ2v2
21 λ1v11v12 +λ2v21v22

λ1v11v12 +λ2v21v22 λ1v2
12 +λ2v2

22

)

= λ1

( v2
11 v11v12

v11v12 v2
12

)
+λ2

( v2
21 v21v22

v21v22 v2
22

)
= λ1A1 +λ2A2, (6)

taking into account that the vector outer (tensorial) product v⃗k⃗vT
k can be written as,(

vk1
vk2

)(
vk1 vk2

)
=

(
v2

k1 vk1vk2
vk1vk2 v2

k2

)
. (7)

2.1.2. Left (row) eigenvectors

Similar to the previous section, we now study the left (row) eigenvectors u⃗k of the real
symmetric matrix A with dimension N ×N and rank r. Thus, we have,

u⃗kA = λ u⃗k, (8)

or explicitely, for N = 2,

(
uk1 uk2

)( A11 A12
A21 A22

)
= λ

(
uk1 uk2

)
. (9)

The left (row) eigenvectors u⃗k constitute an orthonormal basis for the row space Rr of
A, i.e. u⃗k .⃗ul = δkl , with k, l = 1 . . .r. The eigenvectors u⃗k can be represented as the rows
of a N ×N dimensional matrix U, and the associated eigenvalues λk as the elements of
a N ×N dimensional diagonal matrix ΣΣΣ (the last N − r rows and columns can be padded
with zeros), so that the relation between matrix AAA and its eigenvectors can be noted in a
compact matrix form as,

UA = ΛΛΛU, (10)

or, explicitely, for N = r = 2, and eigenvectors u⃗1 = (u11,u12) and u⃗2 = (u21,u22)
T ,(

(u11 u12)
(u21 u22)

)(
A11 A12
A21 A22

)
=

(
λ1 0
0 λ2

)(
(u11 u12)
(u21 u22)

)

=

(
(λ1u11 λ1u12)
(λ2u21 λ2u22)

)
. (11)
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Starting from eq. (10), matrix A can be rewritten as a spectral decomposition,

A = UT ΛΛΛU

=
r

∑
k=1

λk
(⃗
uT

k u⃗k
)
=

r

∑
k=1

λkAk, (12)

where we made use of the fact that U is an orthogonal matrix so that U−1 = UT , and
where Ak = u⃗T

k u⃗ = u⃗k ⊗ u⃗k is the vector outside (tensor) product. The r−dimensional
row space of A is decomposed as the direct sum of the 1−dimensional orthogonal vector
spaces spanned by the r eigenvectors u⃗k, Rr = R1 ⊕R2 ⊕ . . .Rr. Explicitly, for the case
N = r = 2, we have(

A11 A12
A21 A22

)
=

((
u11
u21

)(
u12
u22

))(
λ1 0
0 λ2

)(
(u11 u21)
(u12 u22)

)

=

(
λ1u2

11 +λ2u2
12 λ1u11u21 +λ2u12u22

λ1u11u21 +λ2u12u22 λ1u2
21 +λ2u2

22

)

= λ1

( u2
11 u11u21

u11u21 u2
21

)
+λ2

( u2
12 u12u22

u12u22 u2
22

)
= λ1A1 +λ2A2, (13)

taking into account that the vector outer (tensorial) product u⃗T
k u⃗k can be written as,(

uk1
uk2

)(
uk1 uk2

)
=

(
u2

k1 uk1uk2
uk1uk2 u2

k2

)
. (14)

2.2. Generalized spectral decomposition for rectangular matrices

2.2.1. Singular Value Decomposition (SVD)

Consider a real rectangular and orthogonal matrix X of dimension M ×N of rank
r = rank(X) ≤ Min(M,N). The matrix can be used to store in its rows a multivariate
time series corresponding to the time evolution f (m)(n) of m = 1 . . .M observables
over a time length n = 1 . . .N. Often, the individual time series are normalized as
( f (m)− < f (m) >)/σ (m), where < f (m) > and σ (m) are the mean and the standard
deviation of each individual time series. The spectral decomposition of square matrices
of eq. (5) and (12) can be generalized to the Singular Value Decomposition (SVD) valid
for rectangular matrices, see Fig. 1,

X = UΣΣΣVT =
r

∑
k=1

σku⃗k⃗vT
k =

r

∑
k=1

σkXk, (15)

where the M×M matrix U contains in its columns the left singular vectors u⃗k, the N×N
matrix V contains in its columns the right singular vectors v⃗k, the M × N matrix ΣΣΣ
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is diagonal and contains the ordered singular values σ1 ≥ σ2 ≥ . . . ≥ σr. Here also,
Xk = u⃗k⃗vT

k ≡ u⃗k ⊗ v⃗k are elementary (rank-1) matrices.
The orthonormal set v⃗k⃗vl = δkl constitutes a basis for the row space of X. In the present

application, the row space of X has a physical interpretation as it represents the time
evolution of the multivariate time series. Note that the eigenvectors v⃗k = (v1k,v2k . . .vNk)

have the same length N as each of the individual time series f (m)(n) with n = 1 . . .N.
Thus, the eigenvectors v⃗k can be interpreted as temporal eigen-modes of X.

On the other hand, the orthonormal set u⃗ku⃗l = δkl constitutes a basis for the column
space of X. Th e column space now also has a physical interpretation. A column of X
consists of the measurements f (m)(n0) of the m = 1 . . .M observables at time moment
n = n0, and thus constitutes a static snapshot of how the different observables relate at
that specific time moment. Each column can be interpreted as the spatial configuration of
the m= 1 . . .M observables at each time moment. Thus the vectors u⃗k = (uk1,uk2 . . .ukM)
constitute the spatial eigen-modes of X.

In the case of symmetrical matrices, X = XT , it can be seen that UΣΣΣVT = VΣΣΣT UT , so
that left and right singular vectors are the same, u⃗k = v⃗k, and SVD can be considered
as an eigen-decomposition generalized to rectangular matrices. Many mathematical
software packages, such as e.g. Mathematica, contain routines that readily print out the
SVD decomposition of a matrix. However, the actual calculation of the singular vectors
u⃗k, v⃗k and singular values σk is done using two associated correlation matrices.

FIGURE 1. Singular Value Decomposition (SVD) of a rectangular data matrix X with dimensions
M×N and r = rank(X)≤ Min(M,N), see eq. (15). Each row of X contains one of m = 1 . . .M time series
f (m)(n) with length n = 1 . . .N. The left (right) singular vectors u⃗k (⃗vk) constitute the spatial (temporal)
eigen-modes of the multivariate time series X, and the ordered singular values σ1 ≥ σ2 ≥ . . .≥ σR are the
associated weights.
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2.2.2. Spatial correlation matrix

The spatial correlation matrix is defined as

Ss =
1
N

XXT , (16)

with dimension M × M and with the same rank r as X because for real matrices
rank(XXT ) = rank(XT X) = rank(X). Each matrix element

(Ss)mp =
1
N

N

∑
n=1

(
f (m)(n)−< f (m) >

)(
f (p)(n)−< f (p) >

)
σ (m)σ (p)

, (17)

is obtained by integrating out the time degree of freedom. The matrix element (Ss)mp is
called the Pearson or cross-correlation coefficient and gives the overlap between the
fluctuations of time series f (m)(n) and f (p)(n). If the time series correspond to the
time evolution of observables measured at different locations (xm,ym) and (xp,yp), then
(Ss)mp quantifies the spatial correlation that exists in the multivariate time series between
these different locations. The diagonal matrix elements are autocorrelation coefficients
and (Ss)mm = 1. Combining eqs. (15) and (19), we obtain,

Ss ∝
(
UΣΣΣVT )(UΣΣΣVT)T

∝
(
UΣΣΣVT )(VΣΣΣT UT)

∝ UΣΣΣΣΣΣT UT , (18)

such that u⃗k = (uk1,uk2, . . .ukM) are the eigenvectors of Ss with k = 1 . . .r with as-
sociated eigenvalues λk = σ2

k . The eigenvectors u⃗k can be interpreted as the spatial
eigen-modes of the multivariate time series X, because they give information on the
correlations between the m = 1 . . .M different observables. Because of the matrix
property trace(SS) = ∑k λk, where trace(SS) = M corresponds with the total variance
of the multivariate time series X, the eigenvalues λk can now be given the physical
interpretation of partial variances: the multivariate time series X is decomposed in
spatial eigen-modes u⃗k, each of which is responsible for a part λk of the original total
variance ∑k λk.

2.2.3. Temporal correlation matrix

In an analogue way, the temporal correlation matrix can be defined as

St =
1
M

XXT , (19)

with dimension N × N and with rank r. Each matrix element (St)ni is obtained by
integrating out the spatial degree of freedom and calculating the correlation between
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the configuration of the system at time moments n and i. Combining eqs. (15) and (19),
we obtain,

St ∝ VΣΣΣT ΣΣΣVT , (20)

such that v⃗k = (vk1,vk2, . . .vkN) are the eigenvectors of St with the same associated eigen-
values or partial variances λk, with k = 1, . . .r. The vectors v⃗k can now be interpreted as
the temporal eigen-modes of the multivariate time series X.

2.3. Singular Value Decomposition (SVD) applied to human
electroencephalographs (EEG)

In this subsection, we will apply SVD to data from human electroencephalography
(EEG). A number of M electrodes are placed on the head on specific locations to monitor
the function of different brain lobes. At any moment t = t0, the EEG constitutes a
snapshot of a static spatial configuration that exists between the different channels, and
in general we will see groups of neighboring channels that exhibit similar activity, see
Fig. 2.

FIGURE 2. Electroencephalography (EEG) as an example of a multivariate time series. Location of 64
electrodes in the international 10-20 system. Most electrodes are named after the cerebral lobe that they
monitor, F (frontal), T (temporal), P (parietal), O (occipital), whereas C stands for central but there is no
central lobe. Odd (even) numbers stand for left (right). The voltage as observed by all electrodes at the
specific time t = t0 is color coded (blue V < 0, red V > 0. Time t = t0 corresponds with the end of the
second eye-blink artifact of Fig.
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FIGURE 3. Electroencephalography (EEG) as an example of a multivariate time series. Fragment of
∆t = 10s of time series of voltage fluctuations as seen by (from top to bottom) the Fp1, Fpz, Fp2, Fp7,
Fp8, O1, Oz and O2 electrodes. Vertical (horizontal) gridlines are 1s (100µV ) apart. The subject has
his eyes open. Most of the voltage fluctuations are spontaneous brain activity. Eye blinking artifacts are
observed in the frontal channels at the beginning and end of the fragment. A short episode of dominant
alpha rhythm is observed in the occipital channels after the second eye-blinking artifact. Public data from
Physionet [2, 3].

(a) EEG frontal channels (b) EEG occipital channels (d) Spectrum of partial
variances

FIGURE 4. SVD analysis of a fragment of ∆t = 1s of an EEG recording with 64 electrodes and
sampling frequency fS = 160Hz. The subject has his eyes closed. (a) Time series of frontal channels (Fp1,
Fpz, Fp2), the broad peak at i = 100 is an eye movement artifact. (b) Time series of occipital channels
(O1, Oz, O3), the periodic behavior with f = 10Hz is the alpha rhythm. (c) Spectrum of partial variances
{λk,k = 1, . . .64}. Public data from Physionet [2, 3].
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(f) First eigenmode

(g) Second eigenmode

(h) Third eigenmode

(h) Fourth eigenmode
FIGURE 5. First few eigen-modes of the SVD analysis of a fragment of ∆t = 1s of EEG recording of
Fig. 4. The the left singular vectors v⃗k are temporal eigen-modes (left panels), the right singular vectors
u⃗k are spatial eigen-modes (middle and right panels).
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On the other hand, an EEG is the result of a dynamical process and the behavior
of the time series of the potential fluctuations V (t) of the different channels can be
studied in time, see Fig. 3. In resting conditions, most of the dynamic activity seen in
EEG recordings corresponds with spontaneous cerebral activity (stochastic fluctuations),
such that only noisy temporal eigen-modes are obtained with an SVD analysis. On
the other hand, SVD can be used within the context of Evoked Potentials (EP) to
study the standard responses of the brain during stimulation with calibrated visual or
acoustic signals [1]. In the following, we will apply SVD to EEG fragments with clearly
identifiable eye-blinking artifacts and alpha-wave activity.

Consider the data matrix

X =


f (1)(1) f (1)(2) · · · f (1)(N)

f (2)(1) f (2)(2) · · · f (2)(N)
...

... . . . ...
f (M)(1) f (M)(2) · · · f (M)(N)

 , (21)

where the rows correspond with the time series of length N = 160 of M = 64 channels
of an EEG recording with a sampling frequency fS = 160Hz, such that X corresponds
with a fragment of ∆t = 1s of a multivariate time series of electrical cerebral activity.
Applying SVD, a spectrum of partial variances is obtained λk, and typically the first
few partial variances are responsible for almost all of the total variance, see Fig. 4 and
ref. [1].

Thus, first of all, SVD constitutes a method for data reduction, because instead of
having to deal with the complete data matrix X of dimensions M ×N, the data can be
approximated in a good approximation with the first few eigen-modes.

Secondly, the spatial and temporal eigen-modes are often more easy to interpret than
the original time series. In Fig. 5, the first few temporal and spatial eigen-modes of
the multivariate time series X are shown. Each static snapshot of the voltage V (t0) at
a specific moment t = t0, such as panel (a) of Fig. 2, can now be written as a linear
superposition of the spatial eigen-modes u⃗k, and likewise each individual time series
f (m)(n) can be written as a linear superposition of the temporal eigen-modes v⃗k. Most of
the temporal eigen-modes are noisy, but it can be seen that the second temporal eigen-
mode v⃗2 corresponds with the alpha rhythm.

3. RANDOM MATRIX THEORY (RMT) AND QUANTUM CHAOS

In nuclear physics, at low excitation energies (E < 8MeV), several models exist that
explain the nuclear excited states in terms of the properties of the constituent particles of
protons and neutrons. At higher excitation energies (E > 8MeV), however, the density
of excited states is so large, that it becomes impossible to explain each individual excited
state separately. Instead, it is customary to study the statistics of the sequence of levels,
whether it corresponds with a random, regular or chaotic series.

To describe the statistics of a quantum excitation spectrum, Wigner invented Random
Matrix Theory (RMT) [4]. According to this theory, at high excitation energies, the
interactions between the constituent particles of a quantum dynamical system become so
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complicated that the exact interaction Hamiltonian can be approximated with a random
matrix, where the matrix elements are chosen at random from a predefined probability
distribution, with as the only restriction that the matrix should obey the underlying
symmetry of the system.

(a) GDE (b) GOE
FIGURE 6. Two realizations of different random matrix ensembles, the Gaussian Diagonal Ensemble
(GDE) (left panels) and Gaussian Orthogonal Ensemble (GOE) (right panels) with M = 10 spectra of
N = 2000 levels. (Upper row) The level density ρ(E) is system dependent, with a gaussian shape for GDE
and a semi-circle for GOE. (Middle row) The energy sequence of ordered eigenstates E(i) = E(i)+ Ẽ(i)
with i = 1 . . .N consists of a global behaviour (trend) E(i) and local fluctuations Ẽ(i). The trend E(i) is
steeper for GOE because of the correlations (level repulsion), which are absent in GDE. The fluctuations
Ẽ(i) are not visible on the present energy scale. (Bottom row) Local fluctuations Ẽ, note the difference in
scale between the global trend E(i) and the local fluctuations Ẽ(i).

The majority of the dynamical quantum systems are invariant with respect to time inver-
sion, and their Hamiltonian can be modeled with an ensemble of real symmetrical ma-
trix. The ensemble that results when a gaussian probability distribution is used, is called
the Gaussian Orthogonal Ensemble (GOE). After diagonalization of a random matrix,
an eigen-spectrum results that offers a statistical description of the excitation spectrum
of the quantum system under study. The diagonalization introduces correlations (level
repulsion) between the successive eigenstates E1 ≤E2 ≤ . . .EN . GOE describes quantum
chaotic spectra.
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On the other hand, one can construct an ensemble of random diagonal matrices,
sometimes called a Diagonal Gaussian Ensemble (GDE) [7]. Diagonal matrices do not
need to be diagonalized, and the eigen-spectrum corresponds to only a reordering of
the original diagonal elements, so that the sequence of eigenstates that results does not
contain correlations. The resulting spectrum is called integrable.

An excitation spectrum or eigens-pectrum E(i) = E(i)+ Ẽ(i) with i = 1 . . .N consists
of a dominant global trend E(i) and typically much smaller local fluctuations Ẽ(i), see
Fig. 6. The global trend trivially results because of the energy ordering of the levels,
whereas the fluctuations reflect the underlying correlations. Thus, prior to any statistical
study, one needs to separate the trend from the fluctuations in a process called unfolding.

Another reason for doing the unfolding process is remove the system-dependent
features of the spectrum E(i) and project on an unfolded spectrum ε(i) with mean level
spacing ⟨s⟩ = 1 with s(i) = ε(i)− ε(i − 1). The standard approach to the unfolding
process considers the accumulated density function, also called step function, see Fig. 7,

N (E) =
∫
−∞

ρ(E ′)dE ′ = ∑
i

θ [E −E(i)] , (22)

where θ(E) is the Heaviside function, and N [E(i)] = i gives the number of levels
up to E = E(i). The step function can be approximated by a smooth function, often
a polynomial of arbitrary degree, so that

N (E) = N (E)+ Ñ (E). (23)

The unfolded levels ε(i) are given by projection of the actual energies over the smooth
function, i.e.

ε(i) = N [E(i)]. (24)

By construction, the mean unfolded level spacing becomes,

⟨s⟩= 1
N −1

N

∑
i=2

(ε(i)− ε(i−1))

=
1

N −1
((εN−εN−1)+(εN−1−εN−2)+(εN−2−εN−3) . . .+(ε3−ε2)+(ε2−ε1))

=
εN − ε1

N −1

≈ N −1
N −1

= 1. (25)

Here, we have used that for spectra with many levels N we have, εi ≈ i. Level fluctuations
around the system-dependent level density ρ(E) are transformed in fluctuations around
the uniform distribution ρ(ε), see Fig. 7.

The local unfolded level fluctuations can be studied with specialized fluctuation
measures. The simplest fluctuation measure is the Nearest-Neighbour Spacing (NNS)
distribution. It is simply the normalized histogram P(s) of all the level spacings s(i) and
quantifies correlations between neighboring levels, it thus corresponds to a short range
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(a) Original eigenenergies (b) Unfolded energies
FIGURE 7. Traditional approach to the unfolding process, original spectrum E(i) (left panels) and
unfolded spectrum ε(i) (right panels). (Upper row) The step function of original energies N (E) =
N (E) + Ñ (E) is curved because of the non-constant level density ρ(E), whereas the step function
of unfolded energies N (ε) corresponds with fluctuations around a straight slope. (Middle row) A matrix
eigen-spectrum E(i) is typically more dense for intermediate energies, and less dense at the extremes E ≪
and E ≫, whereas an unfolded spectrum has a uniform density ρ(ε) = 1. (Bottom row) The shape of the
original level density ρ(E) is density dependent, whereas the density of the unfolded levels is uniform
ρ(ε) = 1. We are interested in local fluctuations around the uniform density.

statistic. Analytical predictions are known for the GDE and GOE models. In the case
of GDE, no correlations (level repulsion) are present in the spectrum, such that both
zero spacings and larger spacings can be observed between successive levels, and the
distribution can be described by a poissonian exponential behavior. In the case of GOE,
correlations (level repulsion) are present, such that zero spacings are highly improbable.
Because of the unfolding, for both ensembles the mean level spacings is unitary, ⟨s⟩= 1.
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Analytically, we have,

PGDE(s) = exp(−s) (26)

PGOE(s) =
π
2

sexp
(
−π

4
s2
)
. (27)

On the other hand, long-range correlations can be measured with the ∆3(ℓ) statistic,
that quantifies as a function of window size ℓ the variance of the unfolded step function
N (ε) around the best fitted straight line, i.e.

∆3(ℓ) = MinA,B

(
1
ℓ

∫ ε+ℓ

ε
(N (ε)−Aε −B)2 dε

)
. (28)

For a non-correlated spectrum, also called soft spectrum, the variance rises linearly
with window size ℓ. Correlations cause rigidity, i.e. a suppression of variance for large
window sizes. The analytical predictions for GDE and GOE are,

∆GDE
3 (ℓ) =

ℓ

15
(29)

∆GOE
3 (ℓ) =

1
π2

(
log(2πℓ)+ γ − 5

4
− π2

8

)
. (30)

The results for the spectral fluctuation measures for a specific system of interest with
unknown underlying symmetry can be compared with the analytical predictions of mod-
els with known symmetries. In Fig. 8, short-range P(s) and long-range ∆3(ℓ) are studied
for the Jπ = 4+ sub-spectrum of 48Ca, calculated with the nuclear shell model. Short-
and long-range fluctuation measures agree that this nuclear excitation spectrum corre-
sponds with the GOE predictions, and that the underlying symmetry is time-inversion
invariance.

FIGURE 8. Comparison of spectral fluctuation measures of the Jπ = 4+ sub-spectrum of 48Ca (bars
and dots) with theoretical predictions for GDE (dashed red line) and GOE (continuous orange line). (Left
panel) Short-range Nearest-Neighbour Spacing (NNS) distribution P(s) with ⟨s⟩= 1. (Right panel) Long-
range spectral rigidity measure ∆3(ℓ).
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4. TIME-SERIES ANALYSIS APPLIED TO RMT

4.1. Time-series interpretation of spectral fluctuations and 1/ f noise

In a recent approach, the unfolded fluctuations of the accumulated level density func-
tion Ñ (E) =N (E)−N (E) (also called δn function) were interpreted as a time series
[6, 7, 8]. This treatment opened the field to the application of specialized techniques
from signal analysis, such as Fourier spectral analysis [6, 7, 8, 29], Detrended Fluctu-
ation Analysis (DFA) [9, 10], wavelets [11], Empirical Mode Decomposition (EMD)
[12, 13, 14], and normal-mode analysis [15, 16]. The result of these investigations is
that for Gaussian RMT ensembles, the fluctuation time series is scale invariant (fractal),
which in the Fourier power spectrum is reflected in a power law,

P( f ) ∝ 1/ f β , (31)

where f is the frequency of the periodic modes in which the time series is decomposed,
whereas when more general non-periodic normal modes are used, such as the temporal
modes of Fig. 5, a “generalized power spectrum” or so-called “scree diagram” results,

λk ∝ 1/kγ , (32)

where k is the index of the normal modes, and where β = γ = 2 (Poisson limit) and
β = γ = 1 (GOE limit), such that the power law does not seem to depend on the basis
used to decompose the time series [17].

4.2. Data-adaptive unfolding

4.2.1. Data-adaptive unfolding of ensembles of spectra

All the fluctuation measures mentioned so far, including the traditional measures such
NNS and ∆3, and the time-series based measures of Fourier power spectrum P( f ), DFA,
EMD and normal modes, are calculated after the prior technical step of unfolding of the
original eigenvalues. Some of the possible unfolding techniques are polynomial unfold-
ing, local averaging, Gram-Charlier expansion and the constant-temperature formula [5].
However, the statistical results for the fluctuations can be quite sensitive on the specific
unfolding procedure used, as mentioned in the context of quantum chaos [18], but also
in more recent applications in network analysis [19].

A similar problem in the context of signal analysis is how to define the trend of a
non-stationary time series. It was concluded that the trend is an intrinsic property of
the time series that should not be defined arbitrarily by an external observer, but should
be obtained in a data-adaptive way from the data itself, see ref. [20]. The purpose of
the present section is twofold: first, we propose to interpret the spectrum of original
eigenvalues E(n) directly as a time series, such that data-adaptive techniques from signal
analysis can be used to decompose the sequence in a global and local part,

E(n) = E(n)+ Ẽ(n), (33)
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secondly, we will present one particular method based on SVD with which this unfolding
can be realized. We will see that the power law of eq. (32) is obtained already during the
proposed data-adaptive unfolding procedure.

A spectrum is a monotonous function that has a dominant trend, with superposed
fluctuations that are typically orders of magnitude smaller. Consequently, the variability
of a spectrum will be due principally to its trend components, characterized by very large
partial variances λk, whereas the fluctuation components will be associated with much
smaller partial variances. We thus expect to be able to distinguish in a data-adaptive way
in the scree diagram between the trend and the fluctuations. To fix the ideas, consider a
GDE and a GOE ensemble of m = 1 . . .M eigen-spectra E(m)(n), where each spectrum
consists of n = 1 . . .N levels. Each spectrum is conveniently accommodated in a row
of the M ×N dimensional matrix X, which can now be interpreted as a multivariate
time series such as in eq. (21). After applying SVD to X, a scree diagram is obtained
where the first few partial variances are orders of magnitude larger than the higher order
partial variances and thus correspond to the trend series E(n), see Fig. 9, The higher-
order partial variances, associated to the fluctuation series Ẽ(n), follow the power law
of eq. (32) with γ = 2 in the GDE case and γ = 1 in the GOE case. If the Fourier
power spectrum is calculated from the fluctuation time series Ẽ(n), then the power law
of eq. (31) follows with β = 2 in the GDE case and β = 1 in the GOE case.

5. RANDOM MATRIX THEORY (RMT) APPLIED TO
MULTIVARIATE STATISTICS

5.1. RMT spectral fluctuation measures applied to multivariate
statistics in finance, networks, the climate and electro- (EEG) and

magnetoencephalography (MEG)

In a previous section, SVD was applied to data from an EEG recording. Typically, in
multivariate statistics, the first few partial variances λk are orders of magnitude larger
than the higher-order ones, see Fig. 4. Thus, it is assumed that a multivariate time
series can be approximated by the first few dominant eigen-modes, whereas the higher-
order components are neglected as noise. However, when the correlation matrices are
calculated from fragments of EEG data, such as in Fig. 10, then the resulting scree
diagram of ordered partial variances λk typically behaves as a power law λk ∝ 1/kγ , as
can be seen in Fig. 11, suggesting that higher-order modes do significantly contribute to
the dynamics. Recently, in the context of correlation matrices of financial multivariate
statistics, it was suggested that the whole spectrum of partial variances λk with k = 1, . . .r
may contain useful information, and that the spectral fluctuation measures from RMT
can be applied to obtain this information [24, 25, 26]. The approach arouse a lot of
interest in many different fields, such as in the study of eigen-spectra of adjacency
matrices of networks [27, 28, 29], and eigen-spectra of empirical correlation matrices
in the climate [30], and electro- and magnetoencephalography [31, 32, 33, 34].

In the application to human EEG of ref. [32], spectral fluctuations of correlation ma-
trices were compared between subjects in rest (eyes open) were vs. visually stimulated
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(a) GDE (b) GOE
FIGURE 9. Results of the application of SVD to a GDE and GOE ensemble of M = 500 spectra, each
with N = 2000 levels. (Upper row) Scree diagram of ordered partial variances λk, of which λ1 and λ2

correspond to the trend E(m)
(n), whereas λk with k = 3 . . .r correspond to the fluctuations Ẽ(m)(n) and

follow a power law λk ∝ 1/kγ with γ = 2 (Poisson) and γ = 1 (GOE). (Bottom row) The Fourier power
spectrum of the fluctuations Ẽ(m)(n) follows a power law P( f ) ∝ 1/ f β with β = γ = 2 (Poisson) and
β = γ = 1 (GOE), shown for one particular spectrum realization (blue curve) and for the ensemble mean
(black curve). Adapted from [21].

subjects. No difference was observed for the NNS statistic, which was to follow the GOE
prediction. In the case of the number variance Σ2 statistic, GOE was found for subjects
in rest, whereas a deviation towards GDE was found for the visually stimulated subjects.
The interpretation was that the visual stimulation changes the correlation pattern of the
data due to its large response in the visual cortex. As a consequence, its relative corre-
lations with the remaining parts of the cortex are lowered. These changes are too subtle
to influence the short-range NNS distribution, whereas the long-range Σ2 statistic was
sensitive enough to detect the change.

The application in networks of ref. [28] makes the physical meaning more obvious.
A network was considered, consisting of two subnetworks, and was represented with its
adjacency matrix. For an unweighted network, the adjacency matrix A is determined in
the following way. If the nodes i and j are connected, then Ai j = 1 and 0 otherwise. For
an undirected network, this matrix is symmetric and consequently has real eigenvalues.
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The spectral fluctuations of the adjacency matrix, as appreciated with the short-range
NNS statistic, corresponded with the GDE prediction when no connections were present
between the two subnetworks, but converged rapidly towards GOE for small connec-
tion probabilities. On the other hand, the long-range ∆3 statistic remained close to the
GDE limit for small connection probabilities and needed large probabilities in order to
converge towards the GOE limit.

5.2. Network interpretation of RMT fluctuation measures

Here, we consider two short fragments of ∆t = 1s of EEG recordings with M = 64
electrodes, time-series length N = 160 and sampling frequency fs = 160Hz. The first
data set corresponds with a person with eyes open and without artifacts, and all recorded
time series correspond with noisy spontaneous cerebral activity. The second data set
corresponds with a person with yes closed, eye-movement artifacts as appreciated in the
frontal channels and alpha rhythm in the occipital channels.

The resulting spatial correlation matrices Ss are shown in Fig. 10. In the eye-open
case, correlations extend over the whole correlation matrix, whereas in the eyes-closed
case frontal channels anticorrelate slightly with the occipital channels.

The difference in configuration is even better observed in the associated binary ad-
jacency matrix, obtained by truncating the correlation matrix (taking arbitrarily 0 if
|(S)i j | < 0.5 and 1 if |(S)i j | ≥ 0.5). Here, it can be seen that in the eyes-closed case
the occipital channels disconnect from the frontal channels. The graph representation
visualizes the differences observed in the adjacency matrix for the two cases. In the
eyes-open case, the brain corresponds with an almost completely connected network,
whereas in the eyes-closed case, the network consists of two subnetworks (frontal vs.
occipital) that are partially disconnected. The approach is based on the evidence that
there are functional, i.e. non-physical, connections in the brain, that can be discovered
the synchronicity between cerebral time series from different areas [35, 36, 37]. In this
way, changes in dynamical brain networks have been discovered in alzheimer and stroke
patients [38, 39].

The changes in network structure can also be studied using the spectral fluctuation
measures of RMT, see Fig. 11. The spectrum of partial variances λk first needs to be
unfolded using the step function N (λk), whereas now the step function goes down
because of the large-to-small ordering of the partial variances. In the present case, the
unfolding is done using a polynomial of order 3. The step function of unfolded energies
N (εk) shows the expected fluctuations around a straight line. The short-range NNS
statistic does not detect any difference between the eyes-open and the eyes-closed case,
and in both cases follows the GOE prediction. The long-range ∆3 statistic corresponds
with the GOE prediction in the eyes-open case, indicating a fully connected network.
In the eyes-closed case, the ∆3 statistic shows a deviation towards the GDE prediction,
indicating the presence of (partially) disconnected subnetworks, in correspondence with
the results obtained using adjacency matrices and network analysis.
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(a) EEG eyes open (b) EEG eyes closed
FIGURE 10. Network interpretation of a fragment of ∆t = 1s of EEG data, of a person with eyes open
and without eye-blinking artifacts (left panels), and of the person with eyes closed, eye movement artefact
and alpha rhythm from Fig. 4 and 5 (right panels). (Upper row) Spatial correlation matrix Ss =

1
N X.XT .

(Second row) Binary adjacency matrix obtained by truncating the correlation matrix. (Bottom row) Graph
representation of the adjacency matrix. In the eyes-open case, all channels observe spontaneous cerebral
activity and correlations are similar between all time series. The resulting dynamical network is well
connected. In the eyes-closed case, frontal channels observe the eye-movement artifact and occipital
channels observe alpha rhythm, such that correlations are stronger within the former and latter groups,
and weaker between both groups. The resulting dynamical network consists of two subnetworks. Public
data from Physionet [2, 3].
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(a) EEG eyes open (b) EEG eyes closed
FIGURE 11. RMT analysis of the spectral fluctuations of the partial variances of the EEG correlation
matrices of Fig. 10. (Upper row) Scree diagram of partial variances λk. (Second row) Step function
N (λk) = k with polynomial smooth fit. (Third row) Unfolded step function N (εk) = k. (Fourth row)
Nearest-neighbor spacing (NNS) distribution. (Bottom row) ∆3 spectral rigidity function. In the panels
with NNS and ∆3, experimental results (histogram bars and dots) are compared with theoretical predic-
tions of GDE (red dashed line) and GOE (orange continuous line).
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6. CONCLUSIONS

It is interesting to note that the primary focus of the application of RMT in the field
of quantum chaos was to find relations between chaotic behavior in the classical and
the quantum world. On the other hand, the recent applications of RMT to multivariate
statistics, e.g. in finance or human EEG, and the application of time-series analysis in
RMT, have as a focus complexity and the statistical behavior of composite dynamical
systems. Perhaps these new applications will shed a new light on the understanding of
quantum chaos.
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